欧美日操-欧美日韩91-欧美日韩99-欧美日韩ay在线观看-xxxx色-xxxx视频在线

AI界的七大未解之謎:OpenAI丟出一組AI研究課題

2018-02-02 16:14:04 量子位  點擊量: 評論 (0)
今天,OpenAI在官方博客上丟出了7個研究過程中發現的未解決問題。OpenAI希望這些問題能夠成為新手入坑AI的一種有趣而有意義的方式,也幫助...

今天,OpenAI在官方博客上丟出了7個研究過程中發現的未解決問題。

OpenAI希望這些問題能夠成為新手入坑AI的一種有趣而有意義的方式,也幫助從業者提升技能。

OpenAI版AI界七大未解之謎,現在正式揭曉——

AI界的七大未解之謎:OpenAI丟出一組AI研究課題

 

1. Slitherin’

難度指數:☆☆

實現并解決貪吃蛇的多玩家版克隆作為Gym環境。

環境:場地很大,里面有多條蛇,蛇通過吃隨機出現的水果生長,一條蛇在與另一條蛇、自己或墻壁相撞時即死亡,當所有的蛇都死了,游戲結束。

智能體:使用自己選擇的自我對弈的RL算法解決環境問題。你需要嘗試各種方法克服自我對弈的不穩定性。

檢查學習行為:智能體是否學會了適時捕捉食物并避開其他蛇類?是否學會了攻擊、陷害、或者聯合起來對付競爭對手?

2. 分布式強化學習中的參數平均

難度指數:☆☆☆

這指的是探究參數平均方案對RL算法中樣本復雜度和通信量影響。一種簡單的解決方法是平均每個更新的每個worker的梯度,但也可以通過獨立地更新worker、減少平均參數節省通信帶寬。

這樣做還有一個好處:在任何給定的時間內,我們都有不同參數的智能體,可能出現更好的探測行為。另一種可能是使用EASGD這樣的算法,它可以在每次更新時將參數部分結合在一起。

3. 通過生成模型完成的不同游戲中的遷移學習

難度指數:☆☆☆

這個流程如下:

訓練11個Atari游戲的策略。從每個游戲的策略中,生成1萬個軌跡,每個軌跡包含1000步行動。

將一個生成模型(如論文Attention Is All You Need提出的Transformer)與10個游戲產生的軌跡相匹配。

然后,在第11場比賽中微調上述模型。

你的目標是量化10場比賽預訓練時的好處。這個模型需要什么程度的訓練才能發揮作用?當第11個游戲的數據量減少10x時,效果的大小如何變化?如果縮小100x呢?

4. 線性注意Transformer

難度指數:☆☆☆

Transformer模型使用的是softmax中的軟注意力(soft attention)。如果可以使用線性注意力(linear attention),我們就能將得到的模型用于強化學習。

具體來說,在復雜環境下使用Transformer部署RL不切實際,但運行一個具有快速權重(fast weight)的RNN可行。

你的目標是接受任何語言建模任務,訓練Transformer,然后找到一種在不增加參數總數情況下,用具有不同超參數的線性注意Transformer獲取每個字符/字的相同位元的方法。

先給你潑盆冷水:這可能是無法實現的。再給你一個潛在的有用提示,與使用softmax注意力相比,線性注意轉化器很可能需要更高的維度key/value向量,這能在不顯著增加參數數量的情況下完成。

5. 已學習數據的擴充

難度指數:☆☆☆

可以用學習過的數據VAE執行“已學習數據的擴充”。

我們首先可能需要在輸入數據上訓練一個VAE,然后將每個訓練點編碼到一個潛在的空間,之后在其中應用一個簡單(如高斯)擾動,最后解碼回到觀察的空間。用這種方法是否能得到更好的泛化,目前還是一個謎題。

這種數據擴充的一個潛在優勢是,它可能包含視角變換、場景光纖變化等很多非線性轉換。

6. 強化學習中的正則化

難度指數:☆☆☆☆

這指的是實驗性研究和定性解釋不同正則化方法對RL算法的影響。

在監督學習中,正則化對于優化模型和防止過擬合具有極其重要的意義,其中包含一些效果很贊的方法,如dropout、批標準化和L2正則化等。

然而,在策略梯度和Q-learning等強化學習算法上,研究人員還沒有找到合適的正則化方法。順便說一下,人們在RL中使用的模型要比在監督學習中使用的模型小得多,因為大模型表現更差。

7. Olympiad Inequality問題的自動解決方案

難度指數:☆☆☆☆☆

Olympiad Inequality問題很容易表達,但解決這個問題往往需要巧妙的手法。

建立一個關于Olympiad Inequality問題的數據集,編寫一個可以解決大部分問題的程序。目前還不清楚機器學習在這里是否有用,但你可以用一個學習的策略減少分支因素。

 

大云網官方微信售電那點事兒
免責聲明:本文僅代表作者個人觀點,與本站無關。其原創性以及文中陳述文字和內容未經本站證實,對本文以及其中全部或者部分內容、文字的真實性、完整性、及時性本站不作任何保證或承諾,請讀者僅作參考,并請自行核實相關內容。
我要收藏
個贊
?
主站蜘蛛池模板: 色狠狠一区二区三区香蕉蜜桃 | 99久久免费午夜国产精品 | 三面娜迦免费观看 | 国产91精品对白露脸全集观看 | 色综合久久综合欧美综合图片 | 久久精品免费观看视频 | 精品久久免费视频 | 亚瑟天堂久久一区二区影院 | 欧美一级在线观看视频 | 国产91在 | 女人高潮特级毛片 | www.精品| 欧美一级特黄特黄做受 | 亚洲国产欧美久久香综合 | 草莓视频无限频下载-丝瓜视 | 综合在线亚洲 | 亚洲国产日韩在线人成下载 | 国产黄网站在线观看 | 欧美的高清视频在线观看 | 精品日本三级在线观看视频 | 国产私密 | 99视频免费在线 | 78视频在线观看免费播放 | 日日摸夜夜添夜夜免费视 | 三级视频在线播放线观看 | swag国产在线 | 最新亚洲人成网站在线影院 | 亚洲国产高清一区二区三区 | 免费在线观看一级毛片 | 狠狠综合欧美综合欧美色 | 色婷亚洲| 久久综合香蕉久久久久久久 | 国产精品五月天 | 中文在线日本免费永久18近 | 一二三四视频在线观看社区 | 国产欧美自拍视频 | 91视频免费看 | 免费一级欧美大片久久网 | 久久99国产精品久久99无号码 | 日韩欧美国产一区二区三区 | 国产精品麻豆久久99 |